Discussion

Protein Structure Prediction by
Deep-learning-based Approaches

Yongcheng Jiang :1 :

2018 Integrated Science Program, Yuanpei College /

i



Review of previous parts

@TT? LA EXE P74 Y High

- W ingle repr. ()]  —> confidence
MSA B
Genetic @ vy —G>—> representation| —» —> o
4 database - @ TrreTY A % (sre) %
search @ trTt .
MSA
Structure
ﬁ—T—T—t —< Evoformer module
(48 blocks) lock
Input sequence (8 blocks) p 1ethods F2 F
P i —
W
—®—> representation representation | ——p- structure
(r.r.c) (r.r.c)

search

Templates

W N i’ﬁl Input MSA, paired rep.

Y

< Recycling (three times) ] N e u ra I n et . Atte nti O n

2-track block D 3-track block

- TR Track num. | 2-track | 3-track

-~
Cropped MSA @‘
o o

...... T SE(3) iterative

Speed Slower | Faster

Masked
Attention
Attention

Attention

T

Attention
_

Database Yes No

all crops

lGradient-based

Crop 2D track Graph-
sequence Transformer folding

& templates

Rl | 58 ‘
7 \_. By -4

* P\ SE(3)-Transformer \C 4

.
©
A
=,

3D track Full atom model




Outline

 Benchmarking deep-learning methods
* Emerging research works involving AlphaFold2 or RoseTTAFold

« Remaining opportunities and challenges for structural biology



Discussion

Benchmarking
Deep-learning methods




The inevitable doubts deep-learning methods encounter

« Strong MSA-derived bias?

« Qver-engineered models?
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Benchmarking AlphaFold2 and RosettaFold requires care

and attention

Benchmark = validate a method using various datasets

* What are the strengths and drawbacks?
« Are they immediately applicable for structural biologist?

* Are low-confidence structures completely useless?

Model confidence

M Very high (pLDDT > 90)
Confident (90 > pLDDT > 70)
Low (70 > pLDDT > 50)
Very low (pLDDT < 50)



A structural biology community assessment of AlphaFold2
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New Results A Follow this preprint
A structural biology community assessment of AlphaFold 2 applications

Mehmet Akdel, ©=* Douglas E V Pires, (&) Eduard Porta Pardo, & Jirgen Janes,
Arthur O Zalevsky, &' Balint Mészaros, & Patrick Bryant, & Lydia L. Good, ©2' Roman A Laskowski,
Gabriele Pozzati, (& Aditi Shenoy, Wensi Zhu, (& Petras Kundrotas, & Victoria Ruiz Serra,

Carlos H M Rodrigues, & Alistair S Dunham, &' David Burke, {2 Neera Borkakoti, Sameer Velankar,
Adam Frost, ‘&' Kresten Lindorff-Larsen, Alfonso Valencia, =) Sergey Ovchinnikov,
Janani Durairaj, &' David B Ascher, (2 Janet M Thornton, &' Norman E Davey, &) Amelie Stein,
Arne Elofsson, (& Tristan | Croll, &' Pedro Beltrao

doi: https://doi.org/10.1101/2021.09.26.461876

This article is a preprint and has not been certified by peer review [what does this mean?).
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AlphaFold2 / RoseTTAFold
Database Applications
Coverage Structural element

Confidence level

Mutation variant

Binding site,
Protein multimer,
Experimental data,




Existing databases have already generated hundreds of
thousands of protein models

SWISS-MODEL Repository Pfam database
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AlphaFold2 offered additional structures with an applicable
confidence metric

 AF2 added 25% residues with novel and confident predictions compared to SMR.

« AF2 confidence score pLDDT correlated with RMSD value from trRosetta model.
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pLDDT stood as a predictor for novel protein fragments
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* Across 11 species, 18429 contiguous regions are “domain-like” with pLDDT > 70.

* Low confidence predictions are significantly enriched for IDRs.

Remarks: SASA = solvent accessible surface area; IlUPred2 = a disorder prediction method



Protein space could be visualized and clusteree

characteristic structural elements
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Geometricus algorithm
We then obtained a matrix of such shape-mer counts for all proteins
shape-mer counts using Non-negative Matrix Factorization (NMF)
t-SNE dimensionality reduction

G-protein coupled olfactory or odorant receptors



Protein space could be visualized and clustered into
characteristic structural elements

» Clusters exclusively composed of AF2-derived structures
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™ Oryza sativa AOAOPOVTQ9 Zea mays Arabidopsis thaliana

Oryza sativa

» Clusters exclusively composed of PDB proteins
« Limited number of species and proteins covered by AF2 database.

« Structure under intense studies by the academia/industries (i.e, antibodies)

AF2 database indicates rarely studied fields as well as topics of high interest.
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35肽重复蛋白 陆地植物蛋白 pentatricopeptide repeat (PPR) superfamily
PCMP-H and PCMP-E subfamilies (Fig 2B) there are no known experimental structures mapped



Deep mutational scanning revealed phenotypic
consequences of genetic variation but lacked structural clues
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AF2-derived structures could be applied in structural
hypotheses about the impact of mutations

AF2-derived models

experimental models
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Remarks: DMS = deep mutational scanning
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High-confidence and low-confidence structures indicate
different tolerance to mutations
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Other aspects worthy of paying attention...

Pocket detection and function prediction  Modelling into cryo-EM/crystallographic data
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the use of AF2 models for molecular replacement or docking into cryo-EM density in place of homologous structures, experimental phasing and/or ab initio model building
use of AF2 models as reference points to improve existing low-resolution structures
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Emerging Researches
Involving AlphaFold2 and RoseTTAFold




Experimental methods inspecting protein-protein interaction

(PPI) lose high-resolution structure information

Yeast two-hybrid Affinity purification mass spectrometry
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Building accurate models of core eukaryotic protein
complexes with combination of RoseTTAFold and AlphaFold2

RESEARCH ARTICLE

STRUCTURE PREDICTION

Computed structures of core eukaryotic
protein complexes

lan R. Humphreys'?+, Jimin Pei**#+, Minkyung Baek'?t, Aditya Krishnakumar'?+, lvan Anishchenko’?,
Sergey Ovchinnikov>®, Jing Zhang>*, Travis J. Ness’+, Sudeep Banjade®, Saket R. Bagde®,

Viktoriya G. Stancheva®, Xiao-Han Li°, Kaixian Liu'®, Zhi Zheng'®", Daniel J. Barrero'?, Upasana Roy",
Jochen Kuper'?, Israel S. Fernandez'®, Barnabas Szakal'®, Dana Branzei'®"’, Josep Rizo*'3°, _
Caroline Kisker'?, Eric C. Greene’3, Sue Biggins'Z, Scott Keeney'®2°, Elizabeth A. Miller®, Qian Cong

J. Christopher Fromme®, Tamara L. Hendrickson’, Qian Cong>**§, David Baker">'*§ 2020- UT Southwestern
2017-2020 UWashington

Key idea: residues in interprotein contacts coevolve!



PPl screen using RoseTTAFold + AlphaFold2 with paired
multiple sequence alignments (pPMSAs)

I OrthoDB ;\ Representative orthologs

JGI Eukaryotic NCBI Eukaryotic
proteomes proteomes

All orthologs

[

Handle multiple copy orthologs
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Concatenated alignment pairs

RoseTTAFold Experimental studies
[ T
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Data , \
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Selected 4090 yeast proteins and their orthologs

Built 4286433 paired alignments
Got 5495 PPIs with RoseTTA or skip
Got 715 PPls with modified AlphaFold



715 candidate PPIls were selected by de novo RF — AF

pipeline
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De novo PPI screen procedure identified much fewer PPls
than experimental methods

Number of protein pairs

RF+AF

Exp. Studies + AF RF+AF

number of pairs supported by AlphaFold2
total number of pairs

23.6% 14.3% 5 53 13.1%

46.9% 30.7% 17.6%

gold  curated BIOGRID Y2H APMS RF2t++H RF2t++L
PPI candidates source

Gold = gold standard (ground truth)
Curated = literature dataset
BIOGRID = curated PPI database

* Higher ratio = more true positive

* Lower ratio = more false positive

AF helps filtering out false positives



AF predicted interprotein contacts with high accuracy
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The protein-protein interaction gallery
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Limitation of the de novo RF — AF pipeline

General limitations
« Available pMSAs are limited for specific organism.
« PPIs with stronger coevolutionary signals are easier to be identified.

« PPIs with stronger interactions between ordered elements are easier to be found.

Specific limitations
« Single hydrophobic/amphipathic helices interactions may be overpredicted.

* High-order obligate protein complexes may be quite inaccurate.



New researches on the way...

New Results A Follow this preprint

Protein complex prediction with AlphaFold-Multimer

Richard Evans, 2 Michael O'Neill, ©= Alexander Pritzel, Natasha Antropova,
Andrew Senior, & Tim Green, Augustin Zidek, 2 Russ Bates,
. . . (a) A2B2C2 heteromer (b) A3B3 heteromer
Sam Blackwell, &2 Jason Yim, & Olaf Ronneberger, ©&' Sebastian Bodenstein, TM-score = 97.4, Nyes = 1,246, PDB ID = 6E3K TM-score = 85.4, Nyes = 795, PDB ID = 7KHD

Michal Zielinski, Alex Bridgland, ©2 Anna Potapenko, “&' Andrew Cowie,
Kathryn Tunyasuvunakool, “& Rishub Jain, = Ellen Clancy, “&' Pushmeet Kohli,
John Jumper, &' Demis Hassabis

doi: https://doi.org/10.1101/2021.10.04.463034

This article is a preprint and has not been certified by peer review [what does this mean?].
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(c) Protein-peptide complex (d) A2B2 heteromer
TM-score = 96.6, DockQ = 0.954, TM-score = 98.5, Nes = 716, PDB ID = 6IWD
Nres = 385, PDB ID = 6JMT
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we modify the losses to take into account permutation symmetry
among identical chains, pair the MSA alignments between individual chains to surface cross-chain genetic
information, introduce a new way of selecting subsets of residues for training, and make various small
adjustments to the structure losses and the model architecture
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Remaining Opportunities and
Challenges for Structural Biology
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Deep-learning-based methods facilitate biomedical researches

Protein
Deep- Structural

structure

prediction alaley

learning

Facilitate protein design,
variants study, and
experimental methods

Increase data coverage
and accuracy



D
Deep-learning also gains support from existing methods

Mysterious and enormous
protein complexes

)

Lack of training sets
(i.e., ligands)

Protein
structure
prediction

Structural
biology

Deep-
learning

Lack of dynamics clues
(i.e., protein folding)

Combination with
high-resolution experimental
data, new biophysical models

Support with physical models
(i.e., molecular docking,
dynamics simulation)
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Summary

* AlphaFold2 and RoseT TAFold are deep-learning-based methods that apply
attention algorithms on MSA and paired distance matrices to iterate accurate
protein structures.

« Both high- and low-confidence predicted structures have biological implications.

* Predicted models have potentials in studying mutational variants, enzymatic

domains, ligand-biding sites, protein design, etc.

&Raptorxﬁk .'I-TASSER DPTechnology

Protein Structure & Function Predictions ~" %*—I- ;i

It is the prelude to solving protein mechanism and function.
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Thank you for your attention
Questions are welcomed
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