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Outline of the discussion

 Recent advances and applications

 Limitations and future perspectives

What is the big picture of the field?
What technological/biological breakthroughs could it bring?



Recent advances and applications

How could traditional CRISPR screens be improved?



Traditional CRISPR screens pipeline
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Three main research frontiers
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Three main research frontiers
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Traditional CRISPR screens pipeline

Library construction
and transfection

Cas9 CRISPR KO
dCas9 CRISPRIi/a
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Targeting non-coding genome
Non-coding genome regulates
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Targeting non-coding genome

Cas9-mediated knockout on noncoding loci in Hi-C hubs

Hi-C network analysis - KO live/dead screening = Hi-C/single cell transcriptomics

hub (5 kb)

~1kb 0 +1 kb
|

-1kb Q +1 kb
M |
I |

——————————————————————————————

______________________________

Design of pgRNA library

Essential
hubs

Specificity
score

Iscore

i

Oligo synthesis

* NGS analysis
» Data processing

sgRNA decoding

Y I_ -
[ U6 sgRNA1 U6 sgRNA2 ]

EGFP CMV
. . . K562
pPgRNA library Viral transduction
construction MOI < 0.3

FACS
selection

b — 30 days
=
U6 'sgRNA1 U6 sgRNA2

PCR amplification of Endpoint, day 30 Infected cells, day 0
barcode sgRNA1

Ding, B. et al. Science Advances (2021)



Targeting non-coding genome

Deletion of essential hubs can alter the global chromatin structure
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Targeting non-coding genome

dCas9-mediated interference on IncRNA loci in human cells
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Targeting non-coding genome

IncRNA knockdown perturbs
in a cell type-specific manner
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Targeting non-coding genome

Cas13-mediated interference on coding and non-coding RNAs

RNA transcript
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Traditional CRISPR screens pipeline
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Altering screening modalities

Pooled screens are limited to low-content readouts

Traditional pooled screens

No individual information (i.e.,
morphology, protein dynamics)
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Yan, X., et al. Journal of Cell Biology (2021)



Altering screening modalities

Pooled screens are limited to low-content readouts

Traditional pooled screens
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Altering screening modalities

Pooled screens are limited to low-content readouts

Traditional pooled screens

1. Only population-level data
2. Spatial data is lost
3. Relied on sgRNA enrichment
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Altering screening modalities
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Altering screening modalities

Optical pooled screens in identifying genes for activation of NF-kB
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Single-cell omics capture individual genomic profiles

Read 1 UMI
1. Cells and enzymes are

mixed with gel beads.

. : +
2. Lysis and RT happens in sgRNA (GBC)
the GEM.
or mRNA

Gel beads

. Library construction after

) breaking the emulsion.
i (—U 4. NGS sequencing.

GEM = gel bead-in-emulsion
CBC = cell barcode

UMI = unique molecular identifier
GBC = guide barcode

https://www.10xgenomics.com/products/single-cell-crispr-screening
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Single-cell functional genomics

Perturb-seq combines pooled CRISPR screens with scRNA-seq
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Single-cell functional genomics

Mapping genetic interactions with dual-gene perturbations
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Single-cell functional genomics

Perturb-ATAC combines pooled CRISPR screens with chromatin
accessibility profiling of single cells
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Single-cell functional genomics

Perturb-ATAC CRISPRI screens in B lymphoblasts
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Advanced CRISPR screens pipeline

Library construction
and transfection

Perturbation Genotype-phenotype
mapping

Survival/dropout
FACS markers
} Imaging features
Single-cell sequencing
d Transcriptomics

CRISPR KO

CRISPRi Pooled screens d Gene interactions
CRISPRa Arrayed screens O Epigenomics
Cas9/dCas9/Cas13 OP. screens

Targets: every parts of the genome!

Przybyla, L., & Gilbert, L. A. Nature Reviews Genetics (2021) (theoretically)



Limitations and future perspectives

What are the constraints of CRISPR screens?



Major caveats and challenges

Mutual problems
False data interpretation (i.e., ineffective guides, exon skipping, post-
translational modification, off-target effect)

CRISPR KO CRISPRIi/a Gls Single-cell FG

Impractical indel Low efficiency; Low throughput Low throughput

for non-coding 1Kb-window due to the due to high cost
sequence around the TSS exponential rule in preparation

How to design better guide RNA library?

TSS = transcription start site;



sgRNA design tools make different tradeoffs

Features to consider
Species, Cas enzymes (PAM), on/off-target predictions...

v
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A A / \ A
GUIDES
prioritizes multiple-hits consider spacing prioritize annotated
transcripts requirements domains

Hanna, R. E. & Doench, J. G. Nature Biotechnology (2020)



The future of CRISPR functional genomic screening

 Better pilot studies and library design to narrow the experimental space.
* Integration with genomic database (i.e., GWAS) for complex cell models.

« Combination with single-cell multiomics (i.e., CITE-seq) more complex

expression profiles.



Has there been a major breakthrough in our understanding of
genomics that could not have been possible without CRISPR screens?

In vivo Perturb-Seq reveals neuronal and glial abnormalities
associated with autism risk genes
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Citation analyses might give us some clues...

Presume that real-promising techniques
should be adopted by other labs. We define
citation ratio CR:

# of articles

# of reviews

The bigger the CR, the more prevailing the
novel technique is.

Simple pooled screens are the major
screening method, while single-cell
methods are emerging.
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Data was extracted on Dec. 17 from WoS Core Collection



The fates of any new technologies

Novel techniques always undergo an evolution...

The initial, hyper-enthusiastic phase is often mixed with outrageous claims about
the novel method’s power and specificity.

In the maturational stage, the claimed super specificity and super sensitivity
issues are reduced and replaced by more sober understanding of the objective
and reliable values of the method.

In the third phase, the innovation is adopted by a large community and combined
with other methods. This is typically the stage when major breakthroughs are
expected.

CRISPR screening is currently in the phase?

Adapted from Gyuri Buzsaki’'s comments on optogenetics from Prof. Liangyi Chen’s slides



Take-home message

1. CRISPR screening is a programmable
genome-wide high throughput method
for genotype-phenotype mapping.

(=] ra[n]

2. Its workflow could be tailored to
different Cas enzymes, guide RNA
libraries, screening formats, and
readout methods.

3. Limitations in guide RNA library
construction still exist, and traditional E
pooled screens are still the most

common methods.
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